MOVIMENTO PARTE 3

       Este é um movimento que tem participação duas variáveis x (movimento horizontal) e y (movimento vertical). Por exemplo pense numa bola sendo chutada com um certo ângulo em relação ao eixo horizontal. 

Lembrando dos fundamentos do Lançamento Vertical verifica-se que quando a resistência do ar é desprezada, o corpo só sofre a ação da aceleração da gravidade.

 

Lançamento Oblíquo ou de Projétil

 

O móvel se deslocará para a frente em uma trajetória que vai até uma altura máxima e depois volta a descer, formando uma trajetória parabólica.

Para estudar este movimento, deve-se considerar o movimento oblíquo como sendo o resultante entre o movimento vertical (y) e o movimento horizontal (x).

Na direção vertical o corpo realiza um Movimento Uniformemente Variado, com velocidade inicial igual a e aceleração da gravidade (g)

Na direção horizontal o corpo realiza um movimento uniforme com velocidade igual a .

Observações:

  • Durante a subida a velocidade vertical diminui, chega a um ponto (altura máxima) onde , e desce aumentando a velocidade.
  • O alcance máximo é a distância entre o ponto do lançamento e o ponto da queda do corpo, ou seja, onde y=0.
  • A velocidade instantânea é dada pela soma vetorial das velocidades horizontal e vertical, ou seja, . O vetor velocidade é tangente à trajetória em cada momento.

Exemplo:

Um dardo é lançado com uma velocidade inicial v0=25m/s, formando um ângulo de 45° com a horizontal. (a) Qual o alcance máximo (b) e a altura máxima atingida?

Para calcular este movimento deve-se dividir o movimento em vertical e horizontal.

Para decompor o vetor em seus componentes são necessários alguns fundamentos de trigonometria:

Genericamente podemos chamar o ângulo formado de .

Então:

logo:

e:

logo:

 

(a) No sentido horizontal (substituindo o s da função do espaço por x):

sendo

temos:

(1)

No sentido vertical (substituindo por y):

sendo

temos:

(2) 

E o tempo é igual para ambas as equações, então podemos isolá-lo em (1), e substituir em (2):

(1)

, então:

onde substituindo em (2):

(2) 

e onde o alcance é máximo . Então temos:

mas , então:

resolvendo esta equação por fórmula de Baskara:

mas

então:

mas

Então

Substituindo os dados do problema na equação:

 

(b) Sabemos que quando a altura for máxima . Então, partindo da equação de Torricelli no movimento vertical:

e substituindo os dados do problema na equação, obtemos:

 

 

Lançamento Horizontal

Trata-se de uma particularidade do movimento oblíquo onde o ângulo de lançamento é zero, ou seja, é lançado horizontalmente. Por exemplo, quando uma criança chuta uma bola que cai em um penhasco, ou quando um jardineiro está regando um jardim com uma mangueira orientada horizontalmente.

 

Por exemplo:

(Cefet-MG) Uma bola de pingue-pongue rola sobre uma mesa com velocidade constante de 0,2m/s. Após sair da mesa, cai, atingindo o chão a uma distância de 0,2m dos pés da mesa. Considerando g=10m/s² e a resistência do ar desprezível, determine:

(a) a altura da mesa;

(b) o tempo gasto pela bola para atingir o solo.

 

(a)

, e cos0°=1, então:

, considerando a posição horizontal inicial do móvel zero, e isolando t:

Porém neste caso, a aceleração da gravidade (g) vai ser positiva, devido ao movimento ser no mesmo sentido da aceleração.

, mas sen0°=0, então:

, considerando a posição vertical inicial zero e substituindo t:

 

(b) Sabendo a altura da mesa é possível calcular o tempo gasto pela função horária do deslocamento:

, mas sen0°=0, então:

 

Movimento Circular

Grandezas Angulares

As grandezas até agora utilizadas de deslocamento/espaço (s, h, x, y), de velocidade (v) e de aceleração (a), eram úteis quando o objetivo era descrever movimentos lineares, mas na análise de movimentos circulares, devemos introduzir novas grandezas, que são chamadas grandezas angulares, medidas sempre em radianos. São elas:

  • deslocamento/espaço angular: φ (phi)
  • velocidade angular: ω (ômega)
  • aceleração angular: α (alpha)

Saiba mais...

Da definição de radiano temos:

Desta definição é possível obter a relação:

E também é possível saber que o arco correspondente a 1rad é o ângulo formado quando seu arco S tem o mesmo comprimento do raio R.

 

Espaço Angular (φ)

Chama-se espaço angular o espaço do arco formado, quando um móvel encontra-se a uma abertura de ângulo φ qualquer em relação ao ponto denominado origem.

E é calculado por: 

 

Deslocamento angular (Δφ)

Assim como para o deslocamento linear, temos um deslocamento angular se calcularmos a diferença entre a posição angular final e a posição angular inicial:

Sendo:

Por convenção:

No sentido anti-horário o deslocamento angular é positivo.

No sentido horário o deslocamento angular é negativo.

 

Velocidade Angular (ω)

Análogo à velocidade linear, podemos definir a velocidade angular média, como a razão entre o deslocamento angular pelo intervalo de tempo do movimento:

Sua unidade no Sistema Internacional é: rad/s

Sendo também encontradas: rpm, rev/min, rev/s.

Também é possível definir a velocidade angular instantânea como o limite da velocidade angular média quando o intervalo de tempo tender a zero:

 

Aceleração Angular (α)

Seguindo a mesma analogia utilizada para a velocidade angular, definimos aceleração angular média como:

 

Algumas relações importantes

Através da definição de radiano dada anteriormente temos que:

mas se isolarmos S:

derivando esta igualdade em ambos os lados em função do tempo obteremos:

mas a derivada da Posição em função do tempo é igual a velocidade linear e a derivada da Posição Angular em função do tempo é igual a velocidade angular, logo:

onde podemos novamente derivar a igualdade em função do tempo e obteremos:

mas a derivada da velocidade linear em função do tempo é igual a aceleração linear, que no movimento circular é tangente à trajetória, e a derivada da velocidade angular em função do tempo é igual a aceleração angular, então:

Então:

Linear
 
Angular
S
=
φR
v
=
ωR
a
=
αR

 

Período e Frequência

 

Período (T) é o intervalo de tempo mínimo para que um fenômeno ciclico se repita. Sua unidade é a unidade de tempo (segundo, minuto, hora...)

Frequência(f) é o número de vezes que um fenômeno ocorre em certa unidade de tempo. Sua unidade mais comum é Hertz (1Hz=1/s) sendo também encontradas kHz, MHz e rpm. No movimento circular a frequência equivale ao número de rotações por segundo sendo equivalente a velocidade angular.

Para converter rotações por segundo para rad/s:

sabendo que 1rotação = 2πrad,

Movimento Circular Uniforme

 

Um corpo está em Movimento Curvilíneo Uniforme, se sua trajetória for descrita por um círculo com um "eixo de rotação" a uma distância R, e sua velocidade for constante, ou seja, a mesma em todos os pontos do percurso.

No cotidiano, observamos muitos exemplos de MCU, como uma roda gigante, um carrossel ou as pás de um ventilador girando.

Embora a velocidade linear seja constante, ela sofre mudança de direção e sentido, logo existe uma aceleração, mas como esta aceleração não influencia no módulo da velocidade, chamamos de Aceleração Centrípeta.

Esta aceleração é relacionada com a velocidade angular da seguinte forma:

Sabendo que e que , pode-se converter a função horária do espaço linear para o espaço angular:

então:

 

Movimento Circular Uniformemente Variado

Quando um corpo, que descreve trajetória circular, e sofre mudança na sua velocidade angular, então este corpo tem aceleração angular (α).

As formas angulares das equações do Movimento Curvilíneo Uniformemente Variado são obtidas quando divididas pelo raio R da trajetória a que se movimenta o corpo.

Assim:

MUV
MCUV
Grandezas lineares
Grandezas angulares

 

E, aceleração resultante é dada pela soma vetorial da aceleração tangencial e da aceleração centípeta:

 

Exemplo:

Um volante circular como raio 0,4 metros gira, partindo do repouso, com aceleração angular igual a 2rad/s².

(a) Qual será a sua velocidade angular depois de 10 segundos?

(b) Qual será o ângulo descrito neste tempo?

(c) Qual será o vetor aceleração resultante?

 

(a) Pela função horária da velocidade angular:

(b) Pela função horária do deslocamento angular:

(c) Pelas relações estabelecidas de aceleração tangencial e centrípeta: